SPORT

The <u>Scintillation Prediction Observations Research Task</u>: Mission Overview

James Spann^{1,} (Ghee Fry¹), Charles Swenson², Otavio Durão³, Luis Loures⁴, Rod Heelis⁵, Rebecca Bishop⁶, Guan Le⁷, Mangalathayil Abdu ⁴, Linda Krause¹, Clezio Denardin³, Lidia Shibuya⁴, Joseph Casas¹, Shelia Nash-Stevenson¹, Polinaya Muralikrishana³, Joaquim Costa³, Marcelo Padua³, Cristiano Wrasse³,

¹NASA/MSFC, ²USU, ³INPE, ⁴IA UTD, ⁶Aerospace, ⁷NASA/GSFC

SPORT

AEROSPACE

 Joint United States / Brazil Science Mission Concept

- United States
 - Science Instruments
- Brazil
 - Spacecraft
 - Operations

Joint Science Data Analysis

UtahStateUniversity

Organization

INPE

Science

 The equatorial ionization anomalies

Bela Fejer, The Equatorial Ionosphere: A Tutorial CEDAR Meeting, Seattle Washington, 2015

Plasma Bubbles

Why do bubbles sometimes form, and sometimes not, at Different Longitudes? GUVI (Same Local Time, Different Longitudes)

Kil, Hyosub, et al. "Coincident equatorial bubble detection by TIMED/GUVI and ROCSAT-1." Geophysical research letters 31.3 (2004).

Science Goals

1) What is the state of the ionosphere that gives rise to the growth of plasma bubbles that extend into and above the F-peak at <u>different longitudes</u>?

2) How are plasma irregularities at <u>satellite altitudes</u> related to the radio scintillations observed passing through these regions?

Plasma Bubbles

About 1.5 Hours to form a bubble

6

Magnetic Field

Most ground/radar observations come from the American sector of unique magnetic geometry

IRGF 1960

20.0

10.0

-10.0

-20.0

-30.0

-80.0

-70.0

(deg

Measurement and Instrumentation

SPORT Instruments

Ion Velocity Meter UTD

GPS Occultation Receiver Aerospace

Langmuir, E-field, Impedance Probe USU Fluxgate Magnetometer NASA Goddard

Ground Network

- Scintillation sensors
- **TEC** stations

Imagers

Ionosondes

10

Mission ConOps

GPS Radio Occultation and Scintillation

SPORT Methodology

AEROSPACE

- The occurrence of scintillations at later local times is related to the state of the ionosphere at early local times.
 - How does this relation vary with longitude?
- Use case studies when SPORT ascending or descending node is within 17 to 24 LT sector.
- Examine ~15 degree longitude sectors

Methodology Strategy 1

Methodology Strategy 2

Conclusions

- CubeSat missions can be developed with a full/regular suite of science instruments.
- Mid inclination ISS orbits allow for the deconvolution of local time and longitude at low-latitudes

AFROSPACE

 A String of pearls mission to increase time resolution

