

Modeling Weather in the Ionosphere using the Navy's Highly Integrated Thermosphere and Ionosphere Demonstration System (Navy-HITIDES)

S. McDonald<sup>1</sup>, F. Sassi<sup>1</sup>, J. Tate<sup>2</sup>, D. Drob<sup>1</sup>, J. McCormack<sup>1</sup>, A. Mannucci<sup>3</sup>, K. Zawdie<sup>1,</sup> C. Coker<sup>1</sup>

<sup>1</sup>Naval Research Laboratory, Space Science Division, Washington, DC
<sup>2</sup>Computational Physics, Inc., Alexandria, VA
<sup>3</sup>Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA



Whole Atmosphere Community Climate Model Solves dynamics, physics and chemistry from ground to ~500 km



HA-NAVGEM: Operational Navy Analysis (ground to ~95 km) Hybrid 4D-Var 3hr data assimilation products

Ionospheric Effects Symposium, May 2017

**Raytracing Code** 

#### U.S. NAVAL RESEARCH LABORATORY

- Simulations of 1- 31 January 2010
  - Geomagnetically quiet month (average Ap = 3)
    - Except for 20 January when Ap reached 12
  - Stratospheric warming event
    - Increase in stratospheric temperatures between 18 22 January

## Nudging of SD-WACCM-X with 2 different data assimilation products

- NOGAPS-ALPHA (Navy Operational Global Atmospheric Prediction System – Advanced Level Physics High Altitude)
  - 3D-Var, up to ~90 km altitude, 6-hour data products
- HA-NAVGEM (High Altitude Navy Global Environmental Model)
  - Hybrid 4D-Var, up to ~95 km altitude, 3-hour data products

## Semi-Diurnal Tide (SW2)

#### WACCM-X w/ NOGAPS-ALPHA 6-hourly cadence Zonal Wind SW2 Amplitude at 110 km

U.S.NAVAL RESEARCH LABORATORY

#### WACCM-X w/ HA-NAVGEM 3-hourly cadence Zonal Wind SW2 Amplitude at 110 km



- 3-hour HA-NAVGEM better resolves the semi-diurnal tides
- SW2 is twice as strong in WACCM-X with HA-NAVGEM forcing



#### Zonal Wind Amplitudes at 110 km Latitude vs Day of Year

U.S.NAVAL RESEARCH



# 12 Jan 2010 at 1400 LT

U.S.NAVAL RESEARCH



Simulations with HA-NAVGEM forcing capture more <u>longitudinal</u> variability in the ionosphere and compare better to observations.

## Day-to-day variability in NmF2

U.S. NAVAL RESEARCH LABORATORY



Simulations with HA-NAVGEM forcing capture more <u>day-to-day</u> variability in the ionosphere Ionospheric Effects Symposium, May 2017

## January 2010 TEC during SSW period

U.S. NAVAL RESEARCH LABORATORY



### **ExB** Drifts at Jicamarca

U.S.NAVAL RESEARCH





### **Global TEC**

JPLTEC 1300 LT





## Wave-3 and Wave-4 Amplitudes at 1000 LT



U.S. NAVAL

- Amplitudes of wave-3 and wave-4 are similar during each of the 5-day periods
- Appearance of 4 peaks during 17 21 January primarily due to shift in phase of wave-3



## Tides that contribute to wave-3 feature









## **Summary and Conclusions**

- Navy-HITIDES has been one-way coupled to WACCM-X
- Simulated January 2010 using forcing from:
  - NOGAPS-ALPHA (6-hour)
  - HA-NAVGEM (3-hour)

**U.S.NAVAL** 

- 3-hour HA-NAVGEM forcing results in better resolution of SW2 in SD-WACCM-X
- Navy-HITIDES/WACCM-X with HA-NAVGEM improves ionospheric specification
  - Better day-to-day and longitudinal variability
  - Closer match to observations
- Stratospheric warming period
  - Observed enhanced TEC and upward vertical drifts over S. America during 17 – 21 January
  - NAVGEM simulation captured this enhancement
  - Simulations show the enhancement due to shift in wave-3 phase during these days with likely contribution from SW5 tide

### Wave-3 and Wave-4 in Vertical ExB Drifts



U.S. NAVAL RESEARCH LABORATORY