Use of ionospheric GNSS measurements for detection of volcano eruptions

<u>E. Astafyeva¹</u>, K. Shults¹, S. Adourian²

1 - Institut de Physique du Globe de Paris, France; 2 – Ecole Normale Supérieure, France

Co-volcanic ionospheric perturbations

Calbuco volcano - Chile

Calbuco volcano eruptions April 2015

1st eruption: 22 April 2015 21:04UT (18:04LT)

2nd eruption: 23 April 2015 04:00UT (01:00LT)

VEI: 4 (Sub-Plinian) Plume of ~15km alt.

Volcanic plume from space

Mesospheric gravity waves 23 April 2015, at 05:09UTC

Ionospheric response to Calbuco eruptions

TEC response to the eruptions

1st eruption: 22 April 2015 21:04UT (18:04LT)

2nd eruption: 23 April 2015 04:00UT (01:00LT)

erc Calbuco: 2nd eruption: 23/04/2015 - 04:00UT

Shults et al., JGR, 2016

Calbuco: 2nd eruption: 23/04/2015 - 4:00UT

MESOSPHERE (50-80km):

IONOSPHERE (250-400km):

Shults et al. (JGR-Space Physics, 2016)

«Ionospheric Volcanology» : first results

Calbuco: -41.32; -72.61

1st eruption: 22 April 2015, 21:04UT

Sat. used	Lat	Lon	UT (hrs)	Hs (km)	Vr (m/s)
ango-G03,chml-G03,plvl-G03	-43.4	-72.7	21.1773	140	500
ango-G03,tmco-G03,chml-G03	-40.6	-73.2	21.3952	140	850
25ma-G17, chml-G03, laja-G03, pecl-G03	-41.2	-72.4	21.2658	140	420
25ma-G17, Inrs-G03, cbqc-G03	-41.8	-73.1	21.2441	140	460

2nd eruption: 23 April 2015, 04:00UT

Sat. used	Lat	Lon	UT (hrs)	Hs (km)	Vr (m/s)
ango-G13,chml-G13,plvl-G13	-43.5	-70.2	4.94337	300	400
ango-G13, chml-G13, laja-G13, pecl-G13	-39.1	-71.5	5.12943	300	720
25ma-R13, pane-G13, nrvl-G13	-39.1	-71.6	5.05413	300	400
ma01-R13, laja-G13, chml-G13	-42.2	-72.5	5.04021	300	890

Localisation of eruptions:

... from infrasound observations

P. Bittner et al. (ctbto.org) 2ème éruption – 400 km away

... from the ionosphere

Eruption time

$$t_s = t_0 - \frac{\sqrt{(x_0 - x_s)^2 + (y_0 - y_s)^2 + (z_0 - z_s)^2}}{V}$$

SUMMARY

By using data from ground-based GNSS receivers we analyzed the ionospheric TEC response to two eruptions of the Calbuco volcano of 22-23 April 2015;

 ☑ Ionospheric GNSS measurements can be used for the detection of eruptive volcanoes. Higher resolution data & other models might/should give better results... ☺

astafyeva@ipgp.fr

INSTITUT DE PHYSIQUE DU GLOBE DE PARIS

Travel-time diagrams

Vh ~900-1200 m/s

Shults et al. (JGR-Space Physics, 2016)

Shults et al., JGR, 2016

Location of seismic event related to Calbuco activity

http://argentina-travelblog.sayhueque.com/calbuco-volcano/