

Novel Techniques for the use of GNSS Radio Occultation for Specification of the Ionospheric Scintillation Environment

11 May 2017

Ronald Caton, DR03

Air Force Research Laboratory

Keith Groves, William McNeil, Charles Carrano, and Chuck Rino Boston College

> Rebecca Bishop The Aerospace Corporation

100 YEARS OF U.S. AIR FORCE SCIENCE & TECHNOLOGY

Integrity ★ Service ★ Excellence

DISTRIBUTION STATEMENT A: Approved for public release distribution is unlimited (OPS-17-13339).

GNSS RO for Scintillation Environment Specification

- A number of studies have demonstrated the use of GPS RO measurements from LEO satellites to map the global distribution of scintillation
- Typically, these studies associate the scintillating regions with the occultation
 Tangent Point
 - ✓ Often a single value for the TP at a specific altitude (350km) is used to characterize the event
- Comparisons with ionospheric models, *insitu* measurements, and/or ground-based observations have shown that these techniques represent the climatological global distribution of scintillation reasonably well

GNSS RO for Scintillation Environment Specification

- <u>Accurately geolocating</u> the scintillating regions is a complex task due to...
 - ✓ The long slant paths over which the RO events are observed
 - Multiple pierce points through the F-Region ionosphere
 - Potential for interaction with multiple turbulent structures
 - ✓ Varying propagation geometry with respect to B

CROSSING

Why Do We Care?

Primary Objective:

Ground-based sensors provide first-hand knowledge of the local scintillation environment but coverage is limited due to geographical considerations.

Can we fill in the gaps providing global coverage with RO?

Why Do We Care?

Primary Objective:

Ground-based sensors provide first-hand knowledge of the local scintillation environment but coverage is limited due to geographical considerations.

Can we fill in the gaps providing global coverage with RO?

DISTRIBUTION STATEMENT A: Approved for public release distribution is unlimited (OPS-17-13339).

COSMIC-2

Global Occultation Coverage for two different hour periods with COSMIC-2 (includes GLONASS)

COSMIC-2 Simulation Tangent Points - 2016/08/03 00-01 UT

COSMIC-2 Simulation Tangent Points - 2016/08/03 12-13 UT

COSMIC-2

- 6 satellites
- Multi-GNSS capabilities
- Fore & Aft sensors

Significant expansion of coverage compared with C/NOFS

Multi-Phased Approach

- 1. Statistical Tangent Point Analysis (TPA) Study
- 2. Parameterized Constraint Analysis (PCA)
 - Quantify empirical & physical constraints that can be imposed on RO data sets
- 3. Irregularity Parameter Estimation (IPE)
 - Minimization technique to fit observations to model spectra
- 4. Back-propagation
 - Propagate high rate complex signal backwards in time to minimize amplitude fluctuations and determine effective phase screen location
 - Requires continuous hi-rate phase
- 5. Configuration Space Model
 - Addresses continuously changing propagation with respect to B and propagation parallel to B, not currently included in phase screen theory

Statistical Tangent Point Analysis

• <u>CORISS</u>

C/NOFS Occultation Receiver for Ionospheric Sensing and Specification

• <u>SCINDA</u>

AFRL Scintillation Network Decision Aid (VHF & GPS)

- Identified available high-rate (50 Hz) data sets from C/NOFS CORISS sensor and selected ~90-day periods in 2009 and 2011 for comparison of scintillation observations with VHF & GPS data from SCINDA ground stations
- Developed a set of metrics for comparison of space-based and ground-based data sets
 - ✓ Scintillation intensity thresholds
 - ✓ Spatial considerations (ex. 350 km TP within +/- 5° of station)
 - ✓ Temporal considerations (ex. time window to allow for propagation)

Statistical Tangent Point Analysis

ORISS S-4

SAMPLE RESULTS

- S₄ Scatter Plots Ground-vs-Space
- Grouped into several categories
 - ✓ Correct All Clear
 - Missed Detections
 - ✓ Correct Detections
 - ✓ False Alarms
- Comparison with two SCINDA GPS stations (top)
- Comparison with two SCINDA VHF stations (bottom)
 - Top panels: RO Threshold high (strong scintillation only)
 - Bottom panels: RO Threshold low

DISTRIBUTION STATEMENT A: Approved for public release distribution is unlimited (OPS-17-13339).

TPA Summary for 2011 Period

Station	Mag Lat	Missed Detections			False Alarms		
		VHF	GPS	Both	VHF	GPS	Both
Ancon	0.3°	5%	4%	3%	7%	21%	7%
Bahir Dar	3.4°	12%	6%	4%	46%	7%	0%
Kwajalein	4.2°	9%	3%	3%	25%	28%	17%
Guam	6.0°	6%	6%	4%	0%	11%	0%
Bangkok	6.2°	12%	6%	7%	0%	9%	0%
Cuiaba	8.0°	3%	1%	1%	6%	12%	6%
Nairobi	9.4°	5%	4%	2%	8%	7%	0%
Antofagasta	12.0°	6%	2%	1%	15%	31%	9%
Ascension Island	16.5°	3%	3%	2%	60%	47%	43%

- Criteria are \pm 30 minutes and \pm 5° in longitude from 350 km tangent point
- Missed detections refer to TPA not detecting scintillation observed on ground
- False alarms refer to TPA detecting scintillation not observed on the ground
- For most locations TPA provides 80-90% correct detection within 1-hr/10° boundaries from the tangent point; no quantitative equivalent S4 information

PCA Visualization Maps

Color-code shows quantitative probability value (e.g., red > 0.9, yellow > 0.75, green > 0.5)

The extent of each ray path below 1,500 km altitude

PCA quantifies the favorability for sampling irregularity regions for a given RO

The white bar shows the tangent point; pink area shows region of enhanced RO S4 while blue indicates no S4 data.

- Irregularity Parameter Estimation (IPE): Minimization technique to fit observations to model spectra to deduce irregularity amplitude and effective drift velocity
 - Requires only amplitude data
 - Model based on phase screen theory; geometry impacts accuracy
 - Applied to case studies; initial results promising but routine performance characteristics currently unknown

Statistical Tangent Point Analysis

C/NOFS Occultation with PRN 09 on 2011/113 07:02 UT

Density /1 (5)/cc

250

260

270

280

Longitude (deg)

0 2000

- Case Study: FALSE ALARM
- Example:
 - $\checkmark~$ Scintillation detected on RO event over South Am.
 - ✓ Scatterer at any location along RO path link (red)
 - ✓ Tangent Point (gray) maps to longitude if ANC
 - ✓ Comparison with *in-situ* densities from PLP sensor indicate scatterer is > 10° to the west
 - ✓ Test using IPE Technique confirms

290

300

DISTRIBUTION STATEMENT A: Approved for public release distribution is unlimited (OPS-17-13339).

C/NOFS Density

310

320

Inverse Diffraction Method: Back Propagation

2013 Day 052 – PRN 01 Example using actual GPS data

2013 Day 052 – PRN 01

Technique can be applied to GPS RO

Questions

