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Configuration Space Models
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Configuration-space models populate
rectangular data space region with
randomly located field-aligned striation
Size, number density, and fractional
strength can be chosen to support two-
component inverse power law spectral
density functions

A Configuration Space Model for Stochastic lonospheric Structure
http://chuckrino.com/wordpress/wpcontent/uploads/2015/04/ConfigurationSpaceModelSubmissionRev-3.pdf




Intermediate Scale
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8188 Striations
19.53 m to 20 km
11 bifurcations

Data Volume

50 km by 50 km by 30 km

4096x4096x64

Propagation x-interval =468.75 m 3
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Phase-Screen Equivalence 3D
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Empirical Rule
Phase-screen offset by -4
structure extent aligns with
full diffraction at ’ structure
extent
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Phase-Screen Equivalence 2D
Single Power Law

U=1.34 p1=3 mu0=63.831 p2=3 rho=63.83 54=0.76 FIT=2.7594
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- U=0.96 p1=3 mul=63.831 p2=3 rho=63.83 54=0.66 FIT=3.0005

To model data a one-dimensional scan is
extracted at z=0 from each complex signal
realization

To the extend that the 2D to 1D mapping of in-
situ structure to path-integrated structure holds,
the only unknown propagation parameter is
universal strength

Interpretative parameter estimation is applied to
each realization to estimate the U parameter

The results are summarized in the following 2

slides:
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1. The left-hand columns show 90, 60, and
30 degree propagation angles first for full
diffraction and then for the phase-screen
approximation. The second column
shows a 90 degree stronger scatter result

2. The two slides show the 90 degree full
diffraction and phase-screen
approximation results
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Phase-Screen Equivalence 2D
Two-Component
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The standard translation of the defining striation
structure model overestimates the large-scale index
in the two-dimensional phase screen model.

This is possibly attributable to correlation of
structure along the propagation path.



Summary & Conclusions

Fully three-dimensional propagation through configuration-space realizations
verify first-order phase screen equivalence for cross-field geometries
* The equivalence holds for both single and two-component inverse power-
law structures
The two-dimensional phase-screen theory reproduces measured intensity
SDFs for the single-power-law structures with standard parameter translation
* Theoretic SDF fits for two-component inverse power-law structures
require a power-law index closer to the in-situ index
« This may be due to correlation along the propagation direction
Strictly field-aligned propagation (now shown) is a special case under study
* The isotropic field structure, particularly phase, is strongly influenced by
the striation shape
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