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Outline
IDA2017 overview and motivation:

Ø Provide a unified interface for a range of coupled and interlinked geospace models –
one makefile and one configuration file

Ø Automated data download and pre-processing for many data-types

Ø Develop new tools to integrate diverse observational datasets, ranging from the 
plasmasphere to the thermosphere

Principal modules:
Ø Ionospheric physics temporal advance

Ø Ionospheric data assimilation

Ø Thermospheric composition assimilation

Ø Thermospheric wind estimation

Ø Plasmaspheric data assimilation
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Ionospheric physics module
The ionospheric physics module provides short predictions of ionospheric electron density 
based on established physics, external drivers and initial conditions

Drivers:
Parameter Options

Solar EUV flux • EUVAC (empirical model based on observed F10.7)
• TIMED/SEE 37-band observational product
• SDO/EVE 37-band observational product

Thermospheric composition • MSIS empirical model (all versions)
• TIEGCM physics-based model output files
• COMPASS composition assimilation module

Neutral winds • HWM empirical model (all versions)
• TIEGCM physics-based model output files
• EMPIRE wind estimation module

Initial electron density • IRI empirical model (all versions)
• TIEGCM physics-based model output files
• Ionospheric assimilation module
• Previous output

Ionospheric temperatures • IRI empirical model (all versions)
• TIEGCM physics-based model output files

Ion drifts • Scherliess-Fejer equatorial ionospheric drift model
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Ionospheric physics module

Continuity equation (solved at 1 Hz):
production + loss + 𝛁.	(parallel flux + perpendicular flux)

Production rate (recalculated every five minutes):

𝑞 = 	&𝑁(&𝜎(*𝜙*𝑒𝑥𝑝(−𝜏*)
�

*(

where s: neutral species (normally O, O2, N2)
N: number density
w: EUV wavelength band (37 EUVAC-style bands)
	𝜎: ionization cross section
𝜙: Solar flux
𝜏: Optical depth (using Chapman grazing angle approximation)
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Ionospheric physics module

Continuity equation (solved at 1 Hz):
production + loss + 𝛁.	(parallel flux + perpendicular flux)

Kirchengast [1996] loss rate (recalculated every second):
𝛽5 +	𝛽7

1 + 𝛽5	
𝛼5𝑁:

+ 𝛽7	
𝛼;𝑁:

𝑁: −
𝑞<7	

𝛽; + 𝛼7𝑁:
1 + 𝛽;
𝛼5𝑁:

	−
𝑞=7	
𝛼;𝑁:

where 𝛼5 = 4.2E-13 x (300 / Te)0.85

𝛼7 = 1.8E-13 x (300 / Te)0.39

𝛼; = 4.2E-13 x (300 / Te)0.55

𝛽5 = 𝑁<7
ɣ5

	𝛽7 = 𝑁=7ɣ7
	𝛽; = 𝑁=ɣ;
ɣ5 = 1.533E-12 - 5.920E-13 x Ti / 300 + 8.600E-14 x (Ti / 300)2 below 1700 K

= 2.730e-12 - 1.155e-12 x Ti / 300 + 1.483E-13 x (Ti / 300)2 above 1700 K
ɣ7 = 2.82e-11 - 7.74e-12 x Ti / 300 + 1.073e-12 x (Ti / 300)2 - 5.17e-14 x (Ti / 300)3 + 9.65e-16 x (Ti / 300)4

ɣ;	= 1.1410e-10 x (300 / Ti) 0.44
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Ionospheric physics module
Continuity equation (solved at 1 Hz):

production + loss + 𝛁.	(parallel flux + perpendicular flux)

Parallel flux is composed of the field-aligned wind, gravity and diffusion:

𝑁:. 𝑢|| +
𝑔||	
𝑣CD

+
𝑘F(𝑇C + 𝑇:)
𝑚C𝑣CD

𝛻||𝑁:
𝑁:

	

where 𝑣CD: ion-neutral collision frequency
𝑢||: magnetic meridional wind
𝑔||: Field-aligned component of gravity
𝑘𝐵: Boltzmann’s constant
T: Temperature
m: mass
𝛻: Gradient calculated using a spline derivative approach

The diffusion term is simplified by neglecting thermal diffusion coefficients and the field-
aligned component of the ion stress tensor. 
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Ionospheric physics module

Continuity equation (solved at 1 Hz):
production + loss - 𝛁 ·	(parallel flux + perpendicular flux)

Perpendicular flux is calculated from specified equatorial ion drifts:
𝑁:.−𝐯𝐸𝑥𝐵(𝑐𝑜𝑠𝐼�̂�+ sin IθT)

where 𝐯𝐸𝑥𝐵: ion-neutral collision frequency
I: inclination

						𝑟U: Radial	unit	vector
θT: Meridional unit vector

The perpendicular flux term is simplified by neglecting the zonal component. Velocities are 
set to zero poleward of 45o
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Ionospheric assimilation module

Ionospheric Data Assimilation Four-Dimensional (IDA4D) (Bust and Datta-
Barua, [2014])

Assimilates ionospheric observations from ground- and space-borne GNSS 
receivers, HF instruments, Beacon transmitters, in situ densities, satellite 
radiances and other data sources. 

Standalone mode, temporal advance is achieved using a Gauss-Markov 
Kalman Filter approach with IRI as an empirical background model

Coupled physics mode: temporal advance achieved using the physics 
module. Data are assimilated to the model background at each timestep

Bust, G. S., & Datta-Barua, S. (2014). Scientific investigations using IDA4D and 
EMPIRE. Modeling the Ionosphere-Thermosphere System, 283-297.
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Thermospheric composition assimilation module

Assimilates thermospheric O/N2 observations from SSUSI and (soon) GUVI
MSIS empirical background used in 3DVar approach
O/N2 is calculated in a column down to a depth that contains 1021 N2 / m2

J = (x – xb)T B-1 (x – xb) + (y – H x)T R-1 (y – H x)

J – cost function minimized using Powell’s method
xa – O/N2 ratio analysis for which J is minimum
xb – O/N2 ratio background
B – Background error covariance matrix calculated from a 10-year MSIS run 
(8x daily, 50 days between 2000 and 2010)
R – The (diagonal) observation error covariance as reported by SSUSI/GUVI
H – A linear observation operator that interpolates xb to the observation 
locations using inverse-distance weighting of its four nearest neighbours

xb is propagated forwards in time as follows:
xb t2 = 0.9 (xb t1 + MSISt2 – MSISt1) + 0.1 MSISt2
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Thermospheric composition assimilation module
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Thermospheric composition assimilation module



Space Exploration
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Thermospheric composition assimilation module
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Thermospheric composition assimilation module
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Thermospheric composition assimilation module



Space Exploration

Thermospheric composition assimilation module
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Thermospheric composition assimilation module
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Thermospheric composition assimilation module
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Wind estimation module

§ Estimating Model Parameters through Ionospheric Reverse Engineering 
(EMPIRE) Datta-Barua et al. [2009]

§ Meridional wind correction determined to explain the discrepancy between 
the electron density background and analysis

§ All model terms are calculated using ionospheric physics described earlier
Simulated Truth Wind estimate

Meridional wind
in m/s
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Plasmaspheric assimilation module

§ Plasmaspheric Data Assimilation Four-Dimensional (Nikoukar et al. 2015)

§ GPS data assimilated to Global Core Plasmasphere model

§ Gauss-Markov Kalman Filter approach (3DVar also tested)

Nikoukar, R., Bust, G., & Murr, D. (2015). A novel data assimilation technique 
for the plasmasphere. Journal of Geophysical Research: Space 
Physics, 120(10), 8470-8485.
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Plasmaspheric assimilation module
Data coverage Model

3DVar PDA4D
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Summary

§ IDA2017 is a next-generation coupled, modular assimilation 
package

§ Diverse modeling and data assimilation tools available and 
interchangeable through a common interface

§ New developments include a physics advance module and a 
composition assimilation module – early results shown


